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A. The Hamiltonian of the Microring-bus system 

First, we calculate the process of deterministic parametric down-conversion (DPDC) in the 

periodically poled lithium niobate on insulator (PPLNOI) microring resonator. We model the 

DPDC process using the cavity-enhanced dual potential operators  ˆ ,z t  for quantization of 

the electromagnetic field, and the Hamiltonian can be written as the sum of linear ( LĤ ) and 

nonlinear ( NLĤ ) terms: 45, 46 
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where j = p, s, and i represent pump, signal and idler, respectively. 

     eff d d , , ,p s i
S

A x yU x y U x y U x y    is the effective spatial overlap, and 

 
2

d d ,j jA x y U x y   is the mode area for photon j, with S denoting cross-section of the 

waveguide and U(x, y) denoting the normalized transverse mode distribution of electrical field. 

mailto:gongyanxiao@nju.edu.cn
mailto:xiezhenda@nju.edu.cn


And L, nj correspond to the length of the microring resonator and the effective refractive index 

of photon j, respectively. 

Here,  ˆ ,j z t  is achieved using the “modes of the universe approach” in Ref. 45, with 
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where      02j j
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   represents the electric displacement field of 

wave vector kj in the propagation direction (ignoring transmission loss) in the microring 

resonator, with the cavity enhancement effect reflected in the coefficient of  
jku z . t is the 

evolution time, ˆ
jka  stands for the photon annihilation operator of mode kj, ωj is the angular 

frequency, and h.c. represents the Hermitian conjugate. As shown in Fig. 2(c) in the main text, 

for the microring resonator with a length of L, 
jku  can be written as 
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where [0, )z L  represents coordinates in the resonator, and the coordinates of the coupling 

point between the bus waveguide and the microring resonator before and after coupling are z 

= 0, and z = L, respectively. 

According to the boundary conditions at z = 0 and z = L, we can obtain: 
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where T is the transmittance of the coupling between the bus and the microring resonator. 

Substituting the orthogonal relation of the longitudinal modes 45      
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in to Eq. (S4), we can get 
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where 
jk  reflects the enhancement effect of the resonator on the mode. 

Substituting Eq. (S5) into Eq. (S2), we can finally obtain  
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After substituting Eq. (S6) into Eq. (S1) and using the rotating wave approximation, 45, 47 

the Hamiltonian can be derived as 
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Here we use the second-order nonlinear susceptibility
   2 2

eff

iGze      to simplify the 

Hamiltonian, where 
 2

eff   is the effective second-order nonlinear coefficient, and G is the 

reciprocal lattice vector provided by periodically poled structure and perform the integral over 

z in the range of (0, L). Thus, the Hamiltonian is deduced as 
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B. The conditions for Single-longitude-mode (SLM) oscillation in PDC 

process 

To have unbroadened spectra for N-photon state generation, single-longitude-mode (SLM) 

oscillation must be achieved in this cavity-enhanced case, which requires the difference of the 

free spectrum range (FSR) of signal and idler light to be larger than linewidth of the cavity 

resonances. 48, 49 Assuming triple-resonance PDC condition is satisfied at 
0 0 0p s i    , with 

0 0 2j j jn L N c   for j = p, s, and i, where Nj is a positive integer. Hence the frequency of the 

ms(i)th sideband resonance modes aside from the center signal and idler modes are,  
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where 
 s i

  indicates the FSR of angular frequency for signal and idler, respectively, and 

( )s im   are positive integers. If PDC process can happen at s im m m    sideband resonance 

modes for signal and idler, respectively, the energy conservation condition requires 

 ,s im m       (S10) 

where Q   is the angular frequency bandwidth of the resonance modes. Although 

energy conservation condition may also be satisfied when s im m  , with 

s s i im m      , we only discuss the case for s im m   here. Because when 

s im m  , the phase mismatch 
mis 2 2s ik m m L L      is larger than the phase matching 

bandwidth of the wave vector 
QPM 5.56k L  , hence PDC will not happen under such condition. 

According to Eq. (S10), to achieve SLM oscillation, it requires  
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where 
0( 0)s i  is the FSR of the nearest neighbor resonance sideband of ωs0 and ωi0, which 

can be approximately treat as 
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where R is the radius of the microring, with L = 2πR.  

C. The Hamiltonian for high-Q Microring-bus system  

In this section, we calculate and simplify the Hamiltonian for high-Q microring-bus system 

under SLM oscillation condition. For a high-Q microring resonator, its resonant modes 

bandwidth Q     is much smaller than its free spectrum range (FSR) 

2j j jc n L c n R   , where R is the radius of the microring resonator, j = p, s, i. Therefore, 

for SLM oscillation PDC process, the integral range of kj can be safely replaced from (0, )  

to  0 0,j jk k   , where kj0 is the wave vector at the center and 1 2 R   . Here, the 

integral of kp, ks, and ki are written as 
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Within this range, kj, nj and Aeff can be approximately regarded as constants at center 

frequencies (represented by the subscript 0). For triple-resonant PDC processes in high-Q 

resonators, the wave vector bandwidth of the parametric fields is approximately equal to that 

of resonance modes, which is  0j jk k Q  . It is much smaller than the full width at half 

maximum (FWHM) bandwidth QPM 2.78k R    of   2sinc 2p s ik k k G L     (for 

example, when Q = 107, R = 30 μm with the wavelength at 1310 nm, 
4

QPM 3 10 jk k    ). Hence 



it can be simplified as   sinc 2 1p s ik k k G L     . Therefore, the Hamiltonian can be 

rewritten as 
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where 
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To simplify the Hamiltonian, we define a new operator  
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Since 
jk  is extremely narrow in the case of high Q, i.e. 

0j jk k , we can take Taylor 

expansion of  cos 2 jk R  to the first order at kj0: 
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After integration, we obtain 
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For high-Q microring resonators, 1T , hence we can take Taylor expansion of 

   
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define the “normalized discrete Hilbert-space photon annihilation operator” ˆˆ
j jR  , which 
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represents the nonlinear interaction strength. 

D. Time evolution of quantum state inside high-Q microring resonator 

system 

Here we use stationary Schrödinger equation to calculate the time evolution of quantum states 

inside the microring, where the eigenvalue equation of the Hamiltonian can be written as 
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Here,   . Basing on the Hamiltonian of Eq. (S19), for the initial single-photon pump 

state 
†ˆ1 0pp

 , its evolution is limited between the pump state 1
p

 and down-conversion 

photon-pair state † †

,
ˆ ˆ1,1 0s is i
  . Therefore, the eigenstate can be written as  
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Substitute Eq. (S19) and (S22) into Eq. (S21), we can get  
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Solving these equations, we can obtain 

 1 0 2 0, .p p          (S24) 



According to the normalized condition 
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The time evolution of the coefficient of the single-photon term is 1 2
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Therefore, the population of pump photons that evolve over time is 47 
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Thus, the PDC conversion efficiency from the single-photon state to the two-photon state is 

 2sin t  , where t is the equivalent evolution time of the photon in the microring resonator. 

From Eq. (S25), we can also obtain 
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It shows that the output photon state will undergo Rabi oscillation between the single-photon 

and two-photon states. 

E. Calculation with specific parameters for DPDC and DPUC 

We use the commercial software Lumerical Mode Solutions 56 to calculate the parameters of 

LNOI device for DPDC and DPUC. The radius of the microring resonator for DPDC here is 



30 μm, and an etched trapezoidal waveguide parameter with a top width of 0.35 μm, height of 

450 nm, with 60° wall slope and 2-μm-thick SiO2 covered was used, in which a triple-resonance 

PDC process of 646.91 nm1276.80 nm + 1311.29 nm can be achieved. The mode distribution 

and overlap of the three wavelengths are shown in Fig. S1, and the calculated parameters results 

are written as follows:  
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Here, to achieve maximum effective nonlinear coefficient, we choose type-0 PDC for the 

largest nonlinear coefficient d33 = 27 pm/V 50 and poling duty cycle of 50% for the maximum 

Fourier coefficient, hence 
 2

eff 332d  . Using these parameters, we calculate the relation 

between Q and ηPDC under different wavelength, which is discussed in the main text. 

In order to verify our model, we compared this result with a previous work in Ref. 50, where 

the experimental conversion efficiency for SPDC in a LNOI microring resonator is 6.938×10-

7 . Taking the structure of this work into our theory, the efficiency is 1.758×10-6. Therefore, our 

theory is in good agreement with the experimental result. 



 

  

Fig. S1 The mode distribution and overlap of the three wavelengths in microring resonator waveguide: (a) 646.91 

nm, (b) 1276.80 nm, (c) 1311.29 nm, (d) overlap. 

Then we calculate the related parameters of the DPUC progress of 1276.80 nm (photon) + 

1311.29 nm (pump laser) → 646.91 nm using PPLNOI waveguide with the same transverse 

structure of waveguide as the microring. The results for mode distribution and overlap of the 

three wavelengths is shown in Fig. S2, and the parameters are written as follows.  
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Here, the effective refraction index and the overlap of the PPLNOI waveguide is slightly 

different from the corresponding parameters of the microring resonator, because there is no 

bending effect in the straight waveguide for DPUC. Using these parameters, we can calculate 



the conditions for DPUC as shown in the main text. 

 

 

Fig. S2 The mode distribution and overlap of the three wavelengths of the straight waveguide: (a) 646.91 nm, (b) 

1276.80 nm, (c) 1311.29 nm, (d) overlap. 

F. Preparation of deterministic 4-photon cluster state based on PDU 

In the main text, we propose an on-chip design for N-photon cluster states generation. Here, 

we take the 4-photon cluster state as an example to show the generation process in detail.  

As shown in Fig. S3, we code the cluster state in path. In order to obtain the 4-photon cluster 

state 

  4
1234 1234 1234 1234

1
cluster 0000 0011 1100 1111 ,

2
     (S30) 



one pump photon is converted to a four-photon path entanglement state through 6 PDUs and 

on-chip beam splitters (BS) and crossers using devices like multi-mode interference (MMI) 

couplers. Meantime, the relative phase of each path can be adjusted using phase modulators by 

devices like electro-optic modulation. Firstly, the single-photon state inP  passes through the 

first BS and phase plate φ1, the state becomes  1

1,1 1,2P P 2ie  . Then through the PDUs 

connecting to input path P1,1 and P1,2, the state converts to the two-photon state 

 1

2,1 2,2 2,3 2,4P P P P 2ie  . Next, the generated photon pair interference with each other 

through the two BSs. After three phase plates φ2, φ3 and φ4, we can get: 
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Finally, via the last four PDUs with input path P3, 1, P3, 2, P3, 3 and P3, 4, we can get the 4-photon 

path-entangled cluster state 
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The state of Eq. (S30) can be obtained if we define each pair of path qubits (P4, 1 and P4, 1’, 

P4, 2 and P4, 2’, P4, 3 and P4, 3’, P4, 4 and P4, 4’) as 0  and 1 , and set the phase plates φ1 = π/2, 

φ2 = 7π/4, φ3 = π/2 and φ4 = π/4, respectively. 



 

Fig. S3 Circuit design for N-photon cluster state, where after 2 stages, a 4-photon cluster state can be generated, 

in which φ1 = π/2, φ2 = 7π/4, φ3 = π/2 and φ4 = π/4. 

Such module is the basic unit for large size cluster state generation. With proper design of 

BSs and phase plates, N-photon cluster states can be generated through cascading these units. 

Such N-photon cluster state is a key source for one-way computation, which is one approach 

for achieving universal quantum computation. After that, the only operation remaining for 

universal quantum computing 27, 28, 64 is single-qubit measurements of the states, which is easy 

to implement in optical system. 64 

G. Preparation of deterministic N-photon GHZ state based on PDU 

Besides, we also propose an on-chip design for generation of N-photon GHZ state coded in 

path, as shown in Fig. 4(b) in the main text:  

  1
GHZ 0 1 ,

2

N N
i

N e 
 

   (S33) 

Here, we also take the 4-photon GHZ state as an example. Firstly, we use a BS to convert 

the input single-photon Fock state 1   into the single-photon superposition state 

 i0 1 2e  . Then states 0 and 1  are converted to 4-photon state 
4

0


 and 
4

1




respectively, through two stages of PDUs. Therefore, the final output state becomes 

 
4 4

4GHZ 0 1 2ie 
 

  . Following this method, N-photon GHZ state can be generated 

from single-photon superposition state  i0 1 2e   followed by two groups of modules 

which are the same as the N-photon Fock state generation module, where N can be any positive 

integer bigger than 2.  

H. Discussion of practical experimental factors 

1. A model to analysis the influence of loss to the conversion 

efficiency 

In the analysis of DPDC and DPUC, we assume a lossless model. Our model shows that the 

required Q factor of DPDC is ~4×107, and the intrinsic Q raised from the loss limit should be 

as high as possible in comparison to this number, to get high performance, especially when the 

system scales up. In this section, we give an estimation for the conversion efficiency with 

propagation loss taking into consideration.  

For the DPDC process inside a microring, the nonlinear interaction time is I rt Ft  ,48 

Correspondingly, the photons propagate through an equivalently distance of D FL . Hence 

the total propagation loss would be 10-κD/10, where κ is the propagation loss coefficient with 

unit of dB/m. Considering current material-absorption-limit Q of over 3×108 57, i.e., a 

propagation loss of 0.119 dB/m, we estimate a total conversion efficiency of 42.2%, for a single 

photon to be converted to a photon pair using the PPLNOI microring. For the DPUC process, 

however, the propagation loss through the 10-mm waveguide is only 1.19×10-3 dB, which is 



negligible even in a large-scale system with a few hundred steps. 

The currently limit of 42.2% DPDC efficient in practice is already sufficient for the difficult 

task of N-photon state generation, and relatively large photon number generation can be 

expected. However, to really push towards “unitary efficiency”, the device loss needs to be 

further reduced. It is possible as lithium niobate is a high-transparent material, and there is no 

fundamental limit for reduction of the propagation loss through improving of fabrication 

technology, including defect and purity control during crystal growth, lattice damage control 

during smart cut process, and surface roughness control in the device fabrication process, etc. 

2. Noise analysis in DPUC modules 

Here we give a noise analysis for the DPUC process, which takes the Raman and SPDC 

noise in the SFG process into account. For Raman noise, since spontaneous Stokes Raman 

scattering is much stronger than the anti-stokes case, here we mainly calculate the Stokes 

Raman noise. In the straight waveguide for SFG, the Raman process is a broadband effect, so 

that only a very small portion of the Raman photons falls into the bandwidth in the following 

DPDC process, which is 5.42 MHz in our scheme. Basing on experimental result of Ref. 60, 

we calculate the Raman photon rate of ~0.047 Hz in our case. Such single photon counting rate 

from Raman noise can be well suppressed in the coincidence counting measurement when the 

DPDC photon rate is not too low.  

The SPDC noise, on the other hand, is suppressed by the very small frequency difference 

between the signal and idler photons. With the proposed signal and idler wavelengths of 

1276.80 nm and 1311.29 nm, the SPDC process involves a terahertz wave with wavelength of 



48.5 μm. The lithium niobate and SiO2 BOX layer are both highly absorptive, and the mode 

overlapping is rather small for such terahertz wave in a radiative mode. 

 


